Math, asked by Mayank200627, 10 months ago

If x+1/x=√5, Find The Value of:-
i. x²+1/x² And ii. x⁴+1/x⁴

Please, It's Urgent,​

Answers

Answered by Mysterioushine
5

SOLUTION :

x {}^{} +  \frac{1}{x {}^{} }   =  \sqrt{5}  \\  \\ squaring \: on \: both \: sides \\  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} } + 2x. \frac{1}{x}   = 5 \\  \\ (a + b) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab \:  \\  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = 5 \\  \\  =  > x {}^{2}  +  \frac{1}{x {}^{2} }  = 3 -  - (1) \\  \\ squaring \: on \: both \: sides \\  \\  =  > x {}^{4}  +  \frac{1}{ {x}^{4} }  + 2.x {}^{2} . \frac{1}{x {}^{2} }  = 9 \\  \\  =  > x {}^{4}  +  \frac{1}{x {}^{4} }  + 2 = 9 \\  \\  =  > x {}^{4}  +  \frac{1}{x {}^{4} }  = 7

HOPE IT HELPS !!!!

Answered by Anonymous
6

x+1/x = 5

(x+1/x)² = x²+1/x²+2

(5)² = x²+1/x²+2

25-2 = x²+1/x² => 23

(x²+1/x²)² = x⁴+1/x⁴+2

(23)² = x⁴+1/x⁴+2

529-2 = x⁴+1/x⁴

527 = x⁴+1/x⁴

hope this helps

Similar questions