Math, asked by jishabhRishabh1219, 10 months ago

If x-1/x=√5 find the value of x+1/x

Answers

Answered by karannnn43
4

 \:  \:  \:  \:  \: (x -  \frac{1}{x} ) =  \sqrt{5}  \\  =    >  {(x -  \frac{1}{x}) }^{2}  =  {( \sqrt{5} )}^{2}  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2.x. \frac{1}{x}  = 5 \\  =  > {x}^{2}  +  \frac{1}{ {x}^{2} } = 5  + 2 \\  =  > {x}^{2}  +  \frac{1}{ {x}^{2} } = 7

Now,

 \:  \:   \:  \:  \: {(x +  \frac{1}{x} )}^{2}  \\  = {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.x. \frac{1}{x}  \\  =7 + 2 \\  = 9

Since ,

 {(x  +  \frac{1}{x} )}^{2}  = 9 \\   =  >  (x +  \frac{1}{x} ) =  \sqrt{9}  = 3

Answered by sahanjani82
1

Answer:

±3

Step-by-step explanation:

Given

x-1/x=√5

Let us square on both the sides

e.i., (x-1/x)² = (√5)²

=> x²+1/x²-2x•1/x = √25

=> x²+1/x² -2 = 5

=> x²+1/x² = 5+2

=> x²+1/x² = 7

Now,

We have, x²+1/x²

So, (x+1/x)²

=> (x+1/x)² = x²+1/x² +2x•1/x

Since, we know that the value of x²+1/x² = 7

therefore,

=> (x+1/x)² = 7+2

=> (x+1/x)² = 9

=> x+1/x = √9

=> x+1/x = 3

Hence,

x+1/x = ±3

Similar questions