Math, asked by aaryanniraula, 1 day ago

 If x + (1/x) = 5, find the value of [x - (1/x)]^2.​

Answers

Answered by CopyThat
10

Step-by-step explanation:

Given:

\rightarrowtail \bold{x+\dfrac{1}{x}=5 }

To find:

\rightarrowtail \bold{(x-\dfrac{1}{x})^{2} }

Solution:

  • Squaring on both sides.

\mapsto \bold{(x+\dfrac{1}{x})^{2}=5^{2} }

  • ∵ (a + b)² = a² + b² + 2ab.

\mapsto \bold{x^{2}+\dfrac{1}{x^{2}}+2(x)(\dfrac{1}{x})=25  }

\mapsto \bold{x^{2}+\dfrac{1}{x^{2}}+2=25 }

\Rrightarrow \bold{x^{2}+\dfrac{1}{x^{2}}=23 }

  • ∵ (a - b)² = a² + b² - 2ab

\mapsto \bold{x^{2}+\dfrac{1}{x^{2}}-2(x)(\dfrac{1}{x})  }

  • ∵ x² + 1/x² = 23

\twoheadrightarrow \bold{23-2}

\twoheadrightarrow \bold{25}

  • ∴ 25 is the value of x - 1/x²
Similar questions