Math, asked by abhimanyu8700, 8 months ago

If x - 1 / x = 5 , find the value of x^2 + 1/ x^2 and x ^4 + 1/x^4

Answers

Answered by BrainlyIAS
3

\sf x-\dfrac{1}{x}=5

On squaring both sides,

\implies \sf \left( x-\dfrac{1}{x} \right)^2=5^2

\bullet\ \; \qquad \bf (a-b)^2=a^2-2ab+b^2

\implies \sf x^2- 2.x.\dfrac{1}{x}+ \left( \dfrac{1}{x} \right)^2=25

\implies \sf x^2-2+\dfrac{1}{x^2}=25

\implies \sf x^2+\dfrac{1}{x^2} =25+2

\implies \sf \pink{x^2+\dfrac{1}{x^2} =27}

Again squaring both sides,

\implies \sf \left(x^2+\dfrac{1}{x^2} \right)^2=(27)^2

\bullet\ \; \qquad \bf (a+b)^2=a^2+2ab+b^2

\\ \implies \sf (x^2)^2+ 2.x^2.\dfrac{1}{x^2}+ \left(\dfrac{1}{x^2} \right)^2 =(27)^2 \\

\implies \sf x^4+2+\dfrac{1}{x^4}=729

\implies \sf x^4+\dfrac{1}{x^4}=729-2

\implies \sf \blue{x^4+\dfrac{1}{x^4}=727}

Similar questions