if [x+1/x] =5 find the value of (x^2 +1/x^2) and (x^4 +1/x^4
Answers
Answered by
1
Answer:
(X+1/x)^2 = x^2 + 1/x^2 + 2
(√5)^2 = x^2 + 1/x^2 + 2
5 = x^2 + 1/x^2 + 2
5-2 = x^2 + 1/x^2
3 = x^2 + 1/x^2
(X^2 +1/x^2)^2 = (x^2)^2 +(1/x^2)^2 + 2
(3)^2 = x^4 + 1/x^4 + 2
9 = x^4 + 1/x^4 + 2
9 - 2 = x^4 + 1/x^4
7 = x^4 + 1/x^4
Step-by-step explanation:
x+1/x = 5
(x+1/x)² = x²+1/x²+2
(5)² = x²+1/x²+2
25-2 = x²+1/x² => 23
(x²+1/x²)² = x⁴+1/x⁴+2
(23)² = x⁴+1/x⁴+2
529-2 = x⁴+1/x⁴
527 = x⁴+1/x⁴
hope this helps
Similar questions