Math, asked by tejashdeshai, 5 months ago

if x + 1/x=5 , find the value of x^4 + 1/x^4

❌Spam not allowed❌​

Answers

Answered by manthankhade10
2

Step-by-step explanation:

hope this answer will help uuuu

Attachments:
Answered by GoodCharm
7

Given:

 \sf \: x +  \dfrac{1}{x}  = 5

To find:

 \sf{} {x}^{4}  +  \dfrac{1}{ {x}^{4} }

Solution:

 \sf \: x +  \dfrac{1}{x}  = 5

squaring both side

 \sf \bigg(x +  \dfrac{1}{x} \bigg)^{2}   = 5

 \to \sf \bigg(x {}^{2}  +  \dfrac{1}{x {}^{2}  } + 1 \bigg)  = 5  {}^{2}

 \to \sf \bigg(x {}^{2}  +  \dfrac{1}{x {}^{2}  } + 1 \bigg)  = 25

 \to \sf \bigg(x {}^{2}  +  \dfrac{1}{x {}^{2}  } \bigg)  = 25 - 1

 \to \sf \bigg(x {}^{2}  +  \dfrac{1}{x {}^{2}  } \bigg)  = 24

Squaring both side:

 \to \sf \bigg(x {}^{2}  +  \dfrac{1}{x {}^{2}  } \bigg) ^{2} = 24 {}^{2}

 \to \sf \bigg(x {}^{4}  +  \dfrac{1}{x {}^{4}  } + 1 \bigg) = 576

 \to \sf \bigg(x {}^{4}  +  \dfrac{1}{x {}^{4}  } \bigg) = 576 - 1

 \to \sf \bigg(x {}^{4}  +  \dfrac{1}{x {}^{4}  } \bigg) = 575

 \red{ \rm{}so \: done}

Similar questions