Math, asked by yusuff3, 6 months ago

if x + 1/x = 5 find the value of x/(x^2 + x + 1)​

Attachments:

Answers

Answered by pankajdahal79
2

Answer:

-1 or 4/21

Step-by-step explanation:

here \: \\  x +  \frac{1}{x}  = 5 \\  =  >  \frac{x {}^{2} + 1 }{x}  = 5 \\  =  > x {}^{2}  + 1 = 5x \\  =  > x {}^{2}  - 5x =  - 1 \\  =  > x(x - 5) =  - 1 \\  =  > x =  - 1 \: or \:  \: x = 4 \\ if \: x =  - 1 \:  \: then \\  \frac{x}{x {}^{2} + x + 1  }  =  \frac{ - 1}{1  - 1 + 1}   \\  =  \frac{ - 1}{1}  =  - 1 \\ if \: x = 4 \: then \:  \\  \frac{x}{x {}^{2}  + x + 1 }  =  \frac{4}{4 {}^{2} + 4 + 1 }  \\  =  \frac{4}{16 + 4 + 1}  =  \frac{4}{21}

Similar questions