Math, asked by nani9676723555, 7 months ago

if x+1/x=5 find the value of x²+1/x²​

Answers

Answered by Anonymous
1

Answer:

please find the answer in the attachment

Attachments:
Answered by BrainlyPotter176
15

Answer:

  \:  \boxed{ \sf {x}^{2}  \:  +  \:   \dfrac{1}{ {x}^{2} }  \:  = 23}

Solution:

We know that :

 \sf \: x \:  +  \:  \dfrac{1}{x}  \:  =  \: 5

Now by squaring both sides, we get:

 \sf \: x \:  +  \:  \dfrac{1}{x}   \:  =  \: 5 \\  \implies \:  \sf \:  {( \: x \:  +  \:  \dfrac{1}{x} \:  )}^{2}  \   =  \:  {5}^{2}  \\  [  \because \:  { {( \sf \: a \:  +  \: b)}^{2}  \:  =  \: \sf {a}^{2} \:  +  \: 2ab \:  +  \:  {b}^{2} ) }^{2}  ] \\ \sf \:  \implies \:  {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  +  \: 2 \:  =  \: 25 \\  [ \:  \sf \because \: 2 \:  \times  \: x \:  \times  \:  \frac{1}{x}  \:  =  \: 2] \:  \\  \sf \: \implies  \:  {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  =  \: 25 \:  -  \: 2 \\ \sf \:  \implies \:  \boxed{ \sf {x}^{2}  \:  +  \:   \dfrac{1}{ {x}^{2} }  \:  = 23}

Extra - Information:

  • a² – b² = (a – b)(a + b)

  • (a + b)² = a² + 2ab + b²

  • a² + b² = (a + b)² – 2ab

  • (a – b)² = a² – 2ab + b²

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a – b – c)² = a² + b² + c² – 2ab + 2bc – 2ca

  • (a + b)³ = a³ + 3a²b + 3ab² + b³

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a – b)³ = a³ – 3a²b + 3ab² – b³ = a³ – b³ – 3ab(a – b)

  • a³ – b³ = (a – b)(a² + ab + b²)
Similar questions