Math, asked by KeErThAnAaNiL, 9 months ago

If x+1/x=5, find the value of x³+1/x³

Answers

Answered by Darkrai14
202

★Given:-

\sf x + \dfrac{1}{x} = 5

★To Find:-

\sf x^3 + \dfrac{1}{x^3}

★Solution

We know that,

\sf (a+b)^3 = a^3+b^3+3ab(a+b)

Using this identity,

\sf \Bigg ( x + \dfrac{1}{x} \Bigg )^3  \sf = (x)^3 + \Bigg ( \dfrac{1}{x} \Bigg )^3  + 3 \times x \times \dfrac{1}{x}( x + \dfrac{1}{x})

\sf \implies (5)^3 = x^3 + \dfrac{1}{x^3} + 3(5)

\sf \implies 125 = x^3 + \dfrac{1}{x^3} + 15

\sf \implies 125 - 15 = x^3 + \dfrac{1}{x^3}

\sf \implies 110 = x^3 + \dfrac{1}{x^3}

Hope it helps...

Similar questions