Math, asked by patralata70, 8 months ago

If x+1/x=5 find the value of x⁴+1/x⁴.​

Answers

Answered by abhi569
2

Step-by-step explanation:

⇒ x + 1/x = 5

           Square on both sides:

⇒ (x + 1/x)^2 = 5^2

            (a + b)^2 = a^2 + b^2 + 2ab

⇒ x^2 + (1/x)^2 + 2(x*1/x) = 25

⇒ x^2 + 1/x^2 + 2 = 25

⇒ x^2 + 1/x^2 = 23

          Square on both sides:

⇒ (x^2 + 1/x^2)^2 = 23^2

⇒ x^4 + 1/x^4 + 2 = 529

⇒ x^4 + 1/x^4 = 527

Answered by ItzCuteboy8
124

Given :-

\to\sf If  \: x + \frac{1}{x} = 5

To Find :-

\to\sf The  \: value  \: of  \: x^{4} + \frac{1}{x^{4}}

Solution :-

:\implies\sf x + \frac{1}{x} = 5

:\implies\sf (x + \frac{1}{x})^{2} = 5^{2} \:  \:  [\bf Squaring  \: on \:  both  \: sides ]</p><p>

By using this identity,

  • (a + b)² = a² + b² + 2ab

:\implies\sf x^{2} + (\frac{1}{x})^{2} + 2(x \times\frac{1}{x}) = 25

:\implies\sf x^{2} + \frac{1}{x^{2}} + 2 = 25

:\implies\sf x^{2} + \frac{1}{x^{2}} = 25 - 2

:\implies\sf x^{2} + \frac{1}{x^{2}} = 23

:\implies\sf (x^{2} + \frac{1}{x^{2}})^{2} = 23^{2} \:  \:  [ \bf Squaring \:  on \:  both  \: sides ]

:\implies\sf x^{4} + \frac{1}{x^{4}} + 2 = 529

:\implies\sf x^{4} + \frac{1}{x^{4}} = 529 - 2

:\implies\underline{\boxed{\blue{\sf x^{4} + \frac{1}{x^{4}} = 527}}}

Similar questions