Math, asked by shreyamishra8374, 8 months ago

if x +1/x=5, find the values of
a. x^2+1/x^2
b. x^4+1/4^4​

Attachments:

Answers

Answered by tarracharan
1

{\bold{\tt{⟹x+\frac{1}{x}=5}}}

\red{\boxed{\tt{(x+\frac{1}{x})²=x²+\frac{1}{x²}+2(x)(\frac{1}{x})}}}

{\bold{\tt{⟹x²+\frac{1}{x²}=(x+\frac{1}{x})²-2(x)(\frac{1}{x})}}}

{\bold{\tt{⟹x²+\frac{1}{x²}=(5)²-2(1)}}}

⟹\red{\bold{\tt{x²+\frac{1}{x²}=23}}}

_____________________________________

{\bold{\tt{⟹x²+\frac{1}{x²}=23}}}

\red{\boxed{\tt{(x²+\frac{1}{x²})²=x⁴+\frac{1}{x⁴}+2(x²)(\frac{1}{x²})}}}

{\bold{\tt{⟹x⁴+\frac{1}{x⁴}=(x²+\frac{1}{x²})²-2(x²)(\frac{1}{x²})}}}

{\bold{\tt{⟹x⁴+\frac{1}{x⁴}=(23)²-2(1)}}}

⟹\red{\bold{\tt{x⁴+\frac{1}{x⁴}=527}}}

Answered by Anonymous
2

\bigstar EXPLAINATION \bigstar

x +\frac{1}{x} = 5

Squaring on both sides

( x + \frac{1}{x} )^2 = 25

x^2 + \frac{1}{x^2} + \frac{2x}{x} = 25

x^2 + \frac{1}{x^2} + 2 = 25

x^2 + \frac{1}{x^2} = 23

Squaring on both sides

(x^2 + \frac{1}{x^2})^2 = 23^2

x^4 + \frac{1}{x^4}+\frac{2x^2}{x^2} = 529

x^4 + \frac{1}{x^4} + 2 =529

x^4 + \frac{1}{x^4} = 527

Similar questions