Math, asked by vaishnavi0629, 3 months ago

If x + 1/x = 5, find the values of (x² + 1/x²) and (x⁴ + 1/ x⁴).​

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \: \boxed{ \pink{\tt \:  {(x + y)}^{2}  =  {x}^{2} + 2xy +  {y}^{2}}}

\large\underline\purple{\bold{Solution :-  }}

\bf\implies \:x + \dfrac{1}{x}  = 5

On squaring both sides we get,

\rm :\implies\: { \bigg( x + \dfrac{1}{x} \bigg)}^{2}  =  {5}^{2}

\rm :\implies\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 \times x \times \dfrac{1}{x}  = 25

\rm :\implies\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 = 25

\rm :\implies\:\boxed{ \pink{\tt \: {x}^{2}   + \dfrac{1}{ {x}^{2} }  = 23}}

On squaring both sides, we get

\rm :\implies\: { \bigg(  {x}^{2}  + \dfrac{1}{ {x}^{2} } \bigg)}^{2}  =  {23}^{2}

\rm :\implies\: {x}^{4}  + \dfrac{1}{ {x}^{4} }  + 2 \times  {x}^{2}  \times \dfrac{1}{ {x}^{2} }  = 529

\rm :\implies\: {x}^{4}  + \dfrac{1}{ {x}^{4} }  + 2 = 529

\rm :\implies\:\boxed{ \pink{\tt \:   {x}^{4} + \dfrac{1}{ {x}^{4} } = 527  }}

Similar questions