Math, asked by jaspreet1231235, 1 year ago

if x+1/x=5 ,find value 0f x^3+1/x^3​

Attachments:

Answers

Answered by jinadevkv
3

(x + 1/x)³  = x³ + 1/x³ + 3x²*1/x + 3x*1/x² = x³ + 1/x³ + 3x + 3/x

ie, (x + 1/x)³ = x³ + 1/x³ +3 (x + 1/x)

now, substitute the values we have.

ie, 5³ = x³ + 1/x³ + 3*5

x³ + 1/x³ = 125 - 15 = 110

Answered by Anonymous
11

x \:  +  \:  \dfrac{1}{x}  \:  =  \: 5

____________ [GIVEN]

• We have to find the value of {x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3}}

________________________________

x \:  +  \:  \dfrac{1}{x}  \:  =  \: 5

Take cube on both sides

=> \bigg( {x \:  +  \:  \dfrac{1}{x} \bigg )}^{3}  \:  =  \: (5)^{3}

(a + b)³ = a³ + b³ + 3ab (a + b)

=> {x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3} }  \:  +  \: 3x \:  \times  \:  \dfrac{1}{x}  \:  \bigg(x \:  +  \:  \dfrac{1}{x} \bigg) \:  =  \: 125

=> {x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3} }  \:  +  \: 3\: (5) \:  =  \: 125

=> {x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3} }  \:  +  \: 15\:  =  \: 125

=> {x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3} }  \:   =  \: 125\:-\:15

=> {x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3} }  \:   =  \: 110

______________________________

{x}^{3}  \:  +  \:  \dfrac{1}{ {x}^{3} } \:  =  \: 110

________ [ANSWER]

______________________________

Similar questions