Math, asked by sahariamuskan, 10 months ago

if x+1/x=5 find value of x3+1/x3?

Answers

Answered by TrickYwriTer
179

Step-by-step explanation:

Given -

  • x + 1/x = 5

To Find -

  • Value of x³ + 1/x³

Now,

→ x + 1/x = 5

Cubing both sides :-

→ (x + 1/x)³ = (5)³

→ x³ + 1/x³ + 3x²/x + 3x/x² = 125

→ x³ + 1/x³ = 125 - 3x - 3/x

→ x³ + 1/x³ = 125 - 3(x + 1/x)

→ x³ + 1/x³ = 125 - 3(5)

→ x³ + 1/x³ = 125 - 15

→ x³ + 1/x³ = 110

Hence,

The value of x³ + 1/x³ is 110

Answered by Anonymous
85

\large{\sf{\underline{\underline{ANSWER}}}}

GIVEN:-

  • \huge{x+\frac{1}{x}}

TO FIND:-

  • \huge{x^3+\frac{1}{x^3}}

Now,

(x+\frac{1}{x})^3=x^3+\frac{1}{x^3}×3×x×\frac{1}{x}(x+\frac{1}{x})

Now put the values,

 (5)^3=x^3+\frac{1}{x^3}×3(5)

 125-15=x^3+\frac{1}{x^3}

 110=x^3+\frac{1}{x^3}

Extra Information

  •  (a+b)^2=a^2+b^2+2ab

  •  (a-b)^2=a^2-2ab+b^2

  •  a^3+b^3=(a+b)(a^2-ab+b^2)
Similar questions