Math, asked by afagare09, 2 months ago

if x -1/x = 5 , find x^2 + 1/x^2​

Answers

Answered by Salmonpanna2022
25

Step-by-step explanation:

Given that:

 \tt{x -  \frac{1}{x}  = 5} \\  \\

To find:

 \tt{The \: value \: of \:  {x}^{2}  +   \frac{1}{ {x}^{2} } } \\  \\

Solution:

We have,

 \tt{x -  \frac{1}{x}  = 5} \\  \\

Squaring on both sides, we get

 \tt{ \bigg( {x} -  \frac{1}{ {x} } \bigg)^{2}   =  {5}^{2} } \\  \\

Using algebraic Identity

 \tt{(x - y {)}^{2} } = (x - y)(x - y) =  {x}^{2}  - 2xy +  {y}^{2} ,we \: get \\  \\

________________________

Now,

 \tt{ \bigg( {x} -  \frac{1}{ {x} } \bigg)^{2}   =  {5}^{2} } \\  \\

⟹ \tt{ {x}^{2}  - 2x \times \frac{1}{x}  +  \bigg( \frac{1}{x}  \bigg)^{2} = 25}  \\  \\

⟹  \tt{{x}^{2}  - 2 \cancel{x }\times \frac{1}{ \cancel{x}}  +  \bigg( \frac{1}{x}  \bigg)^{2} = 25  }\\  \\

⟹ \tt{ {x}^{2}  - 2 +  \frac{1 }{ {x}^{2} } } = 25 \\  \\

⟹ \tt{ { x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 + 2} \\  \\

⟹  \tt{{x}^{2}  +  \frac{1}{ {x}^{2} }  = 27} \\  \\

Answer:-

 \tt \red{Hence,the \: value \: of \: \:   {x}^{2}  +  \frac{1}{ {x}^{2} }  = 27} \\

Hope it's help you..☺

Similar questions