Math, asked by Mahourankur2365, 10 months ago

If x-1/x=√5 find x^3+1/x^3

Answers

Answered by tahseen619
11

Answer:

18

Step-by-step explanation:

{\underline{{\text{Given}}}}

x -  \dfrac{1}{x}  =  \sqrt{5}

{\underline{{\text{To Find:}}}}

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }

{\underline{{\text{Solution:}}}}

x -  \frac{1}{x}  =  \sqrt{5}   \:  \text{[Squaring both side]} \\  \\ {(x  -  \frac{1}{x} )}^{2}   =  {( \sqrt{5}) }^{2}   \\  \\  {(x +  \frac{1}{x} )}^{2}  - 4.x. \frac{1}{x}  = 5 \text{ [Using Formula }  {(a   +  b)}^{2}   -  4ab =  {(a  -  b)}^{2}  ]   \\  \\  {(x +  \frac{1}{x} )}^{2}  - 4. \cancel{x}. \frac{1}{\cancel{x}}  = 5 \\  \\ {(x +  \frac{1}{x} )}^{2} = 5 + 4 \\  \\ {(x +  \frac{1}{x} )}^{2} = 9 \\  \\ {(x +  \frac{1}{x} )}^{2} =  {(3)}^{2}  \\  \\ x +  \frac{1}{x}  = 3.......(i) \\   \text{[Now, cubing both side ]} \\   {(x +  \frac{1}{x}) }^{3}  =  {( 3)}^{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3.x. \frac{1}{x} (x +  \frac{1}{x} ) = 27 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3.\cancel{x}. \frac{1}{ \cancel{x}.} (3) = 27 \:  \:  \: \text{[From (i)]} \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  +3.3 = 27 \\  \\ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 27 - 9 \\  \\ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 18 \\ \\  \therefore \text{The required answer is 18 }

{{\red{\boxed{ \text{\blue{Some Important Formula Of Algebra}}}}}}

{(x + y)}^{2}={x}^{2}+{y}^{2}+2xy

{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy

{(x + y)}^{2}=(x - y)^{2}+4xy

{(x-y)}^{2}=(x+y)^{2}-4xy

(x + y)^{2}+ (x - y)^{2}=2({x}^{2}+{y}^{2})

(x+y)^{2}-(x-y)^{2}=4xy

 {(x+y)}^{3}={x}^{3}+{y}^{3}+3xy(x+y)

(x-y)^{3}={x}^{3}-{y}^{3}-3xy(x-y)

Similar questions