Math, asked by harsh7831, 1 year ago

if x+1/x=5/so find the value of x*2+1/x2 and x*4+ 1/x4​

Answers

Answered by Anonymous
7
Answer :-  
As provided in Question      

 x + \dfrac{1}{x} = 5

♦ So as we know Identity

 (a + b)^2 = a^2 + b^2 + 2ab \\\\ \implies a^2 + b^2 = (a+b)^2 - 2ab


♦ Then the value of

 x^2 + \dfrac{1}{x^2}

>> Let us consider

 x^2 as "a" and  \dfrac{1}{x^2} as "b" .


♦ Then from the value of  a^2 + b^2 mentioned above .

 x^2 + \dfrac{1}{x^2} = (x + \dfrac{1}{x})^2 - 2x\dfrac{1}{x}
♦ By using the value of  x + \dfrac{1}{x} = 5

 \implies x^2 + \dfrac{1}{x^2} = (5)^2 - 2

 \implies x^2 + \dfrac{1}{x^2} = 25 - 2

 \implies x^2 + \dfrac{1}{x^2} = 23


♦ Now the value of

 x^4 + \dfrac{1}{x^4}

>> Let us consider

 x^4 as "a" and  \dfrac{1}{x^4} as "b" .


♦ Then from the value of  a^2 + b^2 mentioned above .

 x^4 + \dfrac{1}{x^4} = (x^2 + \dfrac{1}{x^2})^2 - 2x^2\dfrac{1}{x^2}

♦ By using the value of  x^2 + \dfrac{1}{x^2} = 23 from above's answer.

 \implies x^4 + \dfrac{1}{x^4} = (23)^2 - 2

 \implies x^4 + \dfrac{1}{x^4} = 529 - 2

 \implies x^4 + \dfrac{1}{x^4} = 527



Answered by pratyush4211
2

Given

x +  \frac{1}{x}  = 5

As We know

(a+b)²=a²+b²+2ab

Using This Identity

Square Both Sides

( x + \frac{1}{x} ) {}^{2}  = 5 {}^{2}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times \cancel{x} \times  \frac{1}{\cancel{x}}   = 25 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 - 2 \\  \\ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23

Now Squaring Both Sides of x²+1/x²=23

({x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  =  {23}^{2}  \\  \\  {x}^{2 \times 2}  +  \frac{1}{ {x}^{2 \times 2} }  + 2 \times  \cancel{x}^{2}  \times  \frac{1}{\cancel {x}^{2} }  = 529 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 529 - 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 527

\boxed{\mathbf{\huge{{x}^{2}+\frac{1}{{x}^{2}}=23}}}

\boxed{\mathbf{\huge{{x}^{4}+\frac{1}{{x}^{4}}=527}}}

Similar questions