Math, asked by surisettidrakshayani, 9 months ago

if x-1/x=5 then find the valu of x2+1/x2​

Answers

Answered by Anonymous
10

Solution:-

Given:-

 \rm \: x -  \dfrac{1}{x}  = 5 \:  \:

To find Value of

 \rm \:  {x}^{2}  +  \dfrac{1}{x {}^{2} }

Now take

 \rm \: x -  \dfrac{1}{x}  = 5 \:  \:

Squaring on both side

 \rm \:  \bigg(x -  \dfrac{1}{x}  \bigg) {}^{2}  =  {5}^{2}

Using this identity

 \rm \: (a - b) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

We get

 \rm \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times x \times  \dfrac{1}{x}  = 25

\rm \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times  \not{x }\times  \dfrac{1}{ \not{x}}  = 25

 \rm \: x {}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 = 25

 \rm \: x {}^{2}  +  \dfrac{1}{ {x}^{2} }  = 25 + 2

 \rm {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 27

So value of x² + 1 / x² = 27

Similar questions