If (x + 1/x) = 5,
Then find the value of
(x⁴ + 1/x⁴)
Answers
Answer
x+1/x = 5
(x+1/x)? = x²+1/x²+2 (5)? = x²+1/x²+2 25-2 = x2+1/x2 => 23
(x²+1/x?)? = x*+1/x*+2
(23)2 = x*+1/x*+2
4 529-2 = x*+1/xª
527 = x4+1/x4
hope this helps
Step-by-step explanation:
Given :-
x + 1/x = 5
To find:-
If (x + 1/x) = 5, Then find the value of (x⁴ + 1/x⁴) ?
Solution:-
Given that:
x + 1/x = 5
On squaring both sides then
=>(x + 1/x)^2 = 5^2
It is in the form of (a+b)^2
Where , a= x and b = 1/x
we know that
(a+b)^2 = a^2 +2ab +b^2
=>x^2+2(x)(1/x) + (1/x)^2 = 25
=>x^2 + 2 + 1/x^2 = 25
=>x^2 + 1/x^2 = 25-2
=>x^2 + 1/x^2 = 23
again ,On squaring both sides
=>(x^2 + 1/x^2)^2 = 23^2
It is in the form of (a+b)^2
Where , a= x^2and b = 1/x^2
we know that
(a+b)^2 = a^2 +2ab +b^2
=>(x^2)^2 + 2(x^2)(1/x^2)+(1/x^2)^2 = 529
=>x^4+2 + 1/x^4 = 529
=>x^4 + 1/x^4 = 529-2
=>x^4 + 1/x^4 = 527
Answer:-
If (x + 1/x) = 5, the value of (x⁴ + 1/x⁴) = 527
Used formulae:-
- (a+b)^2 = a^2 +2ab +b^2
- (a^m)^n=a^mn