Math, asked by manoranjanlitu20, 3 months ago

if x+1/x=5,then find the value
 {x }^{2}  +  \frac{1}{ {x}^{2} }

Answers

Answered by OtakuSama
55

Required Answer:-

Given:-

  •  \sf{x +  \frac{1}{x}  = 5}

To Find:-

  •  \sf{ \bold{ {x}^{2}  +  \frac{1}{ {x}^{2} } }}

Solution:-

 \\\sf{\bold{x +  \frac{1}{x}  = 5}}

  \\    \sf{\implies{(x +  \frac{1}{x} ) {}^{2}   =  {(5)}^{2} }}

 \\  \sf{ \implies{ {(x)}^{2}  + 2 \times x \times   \frac{1}{x}  + ( \frac{1}{x} ) {}^{2}  = 25}}

 \\  \sf{ \implies{ {x}^{2}  + 2 +  \frac{1}{ {x}^{2} }  = 25}}

  \\ \sf{ \implies{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 - 2}}

 \\  \sf{ \therefore{ {x}^{2} +  \frac{1}{ {x}^{2} }   =  \orange{23}}}

Another way to solve:-

 \\\sf{\bold{ {x}^{2}  +  \frac{1}{ {x}^{2} }} }

 \\  \sf{ \implies{(x) {}^{2}   +  ( \frac{1}{x} ) {}^{2} }}

 \\  \sf{ \implies{(x +  \frac{1}{x} ) {}^{2}  - 2 \times x \times  \frac{1}{x} }}

 \\  \sf{ \implies{(5) {}^{2}  - 2}}

  \\ \sf{ \implies{25 - 2}}

  \\ \sf{ \therefore{x {}^{2}  -  \frac{1}{ {x}^{2} }  =  \orange{23}}}

 \sf{ \underline{ \underline{ \purple{More \: important \: formulas:-}}}}

 \sf{ \bold{(a + b) {}^{2} } =  {a}^{2}  + 2ab +  {b}^{2} } \\  \\  \sf{ \bold{(a  - b) {}^{2} } =  {a}^{2}   -  2ab +  {b}^{2} } \\  \\ \sf{ \bold{{a}^{2}  -  {b}^{2} } =  (a + b)(a - b)} \\  \\  \sf{ \bold{ {a}^{2} +  {b}^{2}}   = (a + b) {}^{2}  - 2ab} \\  \\ \sf{ \bold{ {a}^{2}   +   {b}^{2}}   = (a  -  b) {}^{2}   + 2ab}

Similar questions