Math, asked by darshna3o1, 1 year ago

If x+1/x=√5, then find x^2+1/x^2 & x^4+1/x^4

Answers

Answered by DaIncredible
2
Heya friend,
Here is the answer you were looking for:

Identity used :

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

x +  \frac{1}{x}  =  \sqrt{5}  \\

On squaring both the side we get,

 {(x +  \frac{1}{x}) }^{2}  =  {( \sqrt{5} )}^{2}  \\  \\   {(x)}^{2}  +  {( \frac{1}{x}) }^{2}  + 2 \times x \times  \frac{1}{x}  = 5 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 5 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 5 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 3

Again on squaring both the sides we get,


 {( {x}^{2}  +  \frac{1}{ {x}^{2} } )}^{2}  =  {(3)}^{2}  \\  \\  {( {x}^{2} )}^{2}  +  {( \frac{1}{ {x}^{2} } )}^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 9 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 9 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 9 - 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 7

Hope this helps!!!

Feel free to ask in the comment section if you have any doubt regarding to my answer...

@Mahak24

Thanks...
☺☺

darshna3o1: you are free
DaIncredible: what
darshna3o1: i ask questions
DaIncredible: ask
DaIncredible: may be i can answer or any other user will answer
Similar questions
Math, 1 year ago