If x+1/x=√5, then find x^2+1/x^2 & x^4+1/x^4
Answers
Answered by
2
Heya friend,
Here is the answer you were looking for:
Identity used :
![{(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab {(a + b)}^{2} = {a}^{2} + {b}^{2} + 2ab](https://tex.z-dn.net/?f=+%7B%28a+%2B+b%29%7D%5E%7B2%7D++%3D++%7Ba%7D%5E%7B2%7D++%2B++%7Bb%7D%5E%7B2%7D++%2B+2ab)
![x + \frac{1}{x} = \sqrt{5} \\ x + \frac{1}{x} = \sqrt{5} \\](https://tex.z-dn.net/?f=x+%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D++%5Csqrt%7B5%7D++%5C%5C+)
On squaring both the side we get,
![{(x + \frac{1}{x}) }^{2} = {( \sqrt{5} )}^{2} \\ \\ {(x)}^{2} + {( \frac{1}{x}) }^{2} + 2 \times x \times \frac{1}{x} = 5 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 5 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 5 - 2 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 3 {(x + \frac{1}{x}) }^{2} = {( \sqrt{5} )}^{2} \\ \\ {(x)}^{2} + {( \frac{1}{x}) }^{2} + 2 \times x \times \frac{1}{x} = 5 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 5 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 5 - 2 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 3](https://tex.z-dn.net/?f=+%7B%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D%29+%7D%5E%7B2%7D++%3D++%7B%28+%5Csqrt%7B5%7D+%29%7D%5E%7B2%7D++%5C%5C++%5C%5C+++%7B%28x%29%7D%5E%7B2%7D++%2B++%7B%28+%5Cfrac%7B1%7D%7Bx%7D%29+%7D%5E%7B2%7D++%2B+2+%5Ctimes+x+%5Ctimes++%5Cfrac%7B1%7D%7Bx%7D++%3D+5+%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%2B+2+%3D+5+%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%3D+5+-+2+%5C%5C++%5C%5C++%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%3D+3)
Again on squaring both the sides we get,
![{( {x}^{2} + \frac{1}{ {x}^{2} } )}^{2} = {(3)}^{2} \\ \\ {( {x}^{2} )}^{2} + {( \frac{1}{ {x}^{2} } )}^{2} + 2 \times {x}^{2} \times \frac{1}{ {x}^{2} } = 9 \\ \\ {x}^{4} + \frac{1}{ {x}^{4} } + 2 = 9 \\ \\ {x}^{4} + \frac{1}{ {x}^{4} } = 9 - 2 \\ \\ {x}^{4} + \frac{1}{ {x}^{4} } = 7 {( {x}^{2} + \frac{1}{ {x}^{2} } )}^{2} = {(3)}^{2} \\ \\ {( {x}^{2} )}^{2} + {( \frac{1}{ {x}^{2} } )}^{2} + 2 \times {x}^{2} \times \frac{1}{ {x}^{2} } = 9 \\ \\ {x}^{4} + \frac{1}{ {x}^{4} } + 2 = 9 \\ \\ {x}^{4} + \frac{1}{ {x}^{4} } = 9 - 2 \\ \\ {x}^{4} + \frac{1}{ {x}^{4} } = 7](https://tex.z-dn.net/?f=+%7B%28+%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D+%29%7D%5E%7B2%7D++%3D++%7B%283%29%7D%5E%7B2%7D++%5C%5C++%5C%5C++%7B%28+%7Bx%7D%5E%7B2%7D+%29%7D%5E%7B2%7D++%2B++%7B%28+%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D+%29%7D%5E%7B2%7D++%2B+2+%5Ctimes++%7Bx%7D%5E%7B2%7D++%5Ctimes++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%3D+9+%5C%5C++%5C%5C++%7Bx%7D%5E%7B4%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B4%7D+%7D++%2B+2+%3D+9+%5C%5C++%5C%5C++%7Bx%7D%5E%7B4%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B4%7D+%7D++%3D+9+-+2+%5C%5C++%5C%5C++%7Bx%7D%5E%7B4%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B4%7D+%7D++%3D+7)
Hope this helps!!!
Feel free to ask in the comment section if you have any doubt regarding to my answer...
@Mahak24
Thanks...
☺☺
Here is the answer you were looking for:
Identity used :
On squaring both the side we get,
Again on squaring both the sides we get,
Hope this helps!!!
Feel free to ask in the comment section if you have any doubt regarding to my answer...
@Mahak24
Thanks...
☺☺
darshna3o1:
you are free
Similar questions