Math, asked by pragyab12pabj83, 1 year ago

If x+1/x=5 then find x^6-1/x^6

Answers

Answered by DelcieRiveria
0

Answer: The value of x^6-\frac{1}{x^6} is 2640\sqrt{21}.

Explanation:

It is given that,

x+\frac{1}{x}=5

(x+\frac{1}{x})^2=x^2+\frac{1}{x^2}+2

(5)^2=x^2+\frac{1}{x^2}+2

x^2+\frac{1}{x^2}=23

(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2

(x-\frac{1}{x})^2=23-2

(x-\frac{1}{x})=\sqrt{21}

Now use the formulas,

a^3+b^3=(a+b)(a^2+b^2-ab)

We get,

x^3+\frac{1}{x^3}=(x+\frac{1}{x})(x^2+\frac{1}{x^2}-1)

x^3+\frac{1}{x^3}=(5)(23-1)

x^3+\frac{1}{x^3}=110

Using a^3-b^3=(a-b)(a^2+b^2+ab), we get

x^3-\frac{1}{x^3}=(x-\frac{1}{x})(x^2+\frac{1}{x^2}+1)

x^3+\frac{1}{x^3}=(\sqrt{21})(23+1)

x^3+\frac{1}{x^3}=24\sqrt{21}

Now using a^2-b^2=(a-b)(a+b), we get,

x^6+\frac{1}{x^6}=(x^3+\frac{1}{x^3})(x^3-\frac{1}{x^3})

x^6+\frac{1}{x^6}=110\times 24\sqrt{21}

x^6+\frac{1}{x^6}=2640\sqrt{21}

Therefore, the value of x^6-\frac{1}{x^6} is 2640\sqrt{21}.

Similar questions