Math, asked by Himalayaasnani77, 1 year ago

If x+1/x=5 then find x3+1/x3?​

Answers

Answered by LovelyG
18

Answer:

\large{\underline{\boxed{\sf {x}^{3}  +  \frac{1}{ {x}^{3} } = 110}}}

Step-by-step explanation:

Given that-

 \implies \sf x +  \frac{1}{x}  = 5 \\  \\ \bf On \: cubing \: both \: sides :  \\  \\ \implies \sf (x +  \frac{1}{x} ) {}^{3}  = (5) {}^{3}  \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \: . \:x \: . \:  \frac{1}{x} (x +  \frac{1}{x} ) = 125 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x} ) = 125 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 5 = 125 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 15 = 125 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 125 - 15 \\  \\ \boxed{ \boxed{ \bf  \therefore \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 110}}

_______________________

\large{\underline{\underline{\mathfrak{\heartsuit \: Algebraic \: Identities : \: \heartsuit}}}}

  • (a - b)² = a² + b² - 2ab
  • (a + b)² = a² + b² + 2ab
  • (a - b)³ = a³ - b³ - 3ab(a - b)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
Answered by Anonymous
12

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\mathfrak{\large{\underline{\underline{Explanation}}}}

\boxed{\bf{x^3 +  \dfrac{1}{x^3} = 110}}

Given :- \sf{x +  \dfrac{1}{x}=6}

To find :- \sf{x^3 +  \dfrac{1}{x^3}}

Solution :-

\sf{x +  \dfrac{1}{x} = 5}

By cubing on both the sides

\tt{{ \left( x +  \dfrac{1}{x} \right) }^3 = 5^3}

We know that, (a + b)³ = a³ + b³ + 3ab(a + b)

Here a = x, b = 1/x

By substituting the values in the identity we have

\tt{x^3 +  \dfrac{1}{x^3} + 3 \times x \times \dfrac{1}{x} \left( x +  \dfrac{1}{x} \right) = 125}

\tt{x^3 +  \dfrac{1}{x^3} + 3 \left( x +  \dfrac{1}{x} \right) = 125}

\tt{x^3 +  \dfrac{1}{x^3} + 3(5) = 125}

[Since x + 1/x = 5]

\tt{x^3 +  \dfrac{1}{x^3} + 15 = 125}

\tt{x^3 +  \dfrac{1}{x^3} = 125 - 15}

\tt{x^3 +  \dfrac{1}{x^3} = 110}

\boxed{\bf{x^3 +  \dfrac{1}{x^3} = 110}}

\mathfrak{\large{\underline{\underline{Identity\:Used:-}}}}

(a + b)³ = a³ + b³ + 3ab(a + b)

\mathfrak{\large{\underline{\underline{Some\:Important\:Identities:-}}}}

[1] (a + b)² = a² + b² + 2ab

[2] (a - b)² = a² + b² - 2ab

[3] (a + b)(a - b) = a² - b²

[4] (x + a)(x + b) = x² + (a + b)x + ab

Similar questions