Math, asked by aa6035288, 7 months ago

If x + 1/x = 5, then value of x^2 + 1⁄x^2



25

10

23

27

Answers

Answered by Anonymous
3

Solution:-

Given:-

 :  \implies \rm \: x +  \dfrac{1}{x}  = 5

To find :-

 :  \implies \rm \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Now take

 :  \implies \rm \: x +  \dfrac{1}{x}  = 5

:- squaring on both side

 :   \implies\rm \:  \bigg(x +  \dfrac{1}{x}  \bigg)^{2}  =  {5}^{2}

Using this identities:- ( a + b )² = a² + b² + 2ab , we get

  : \implies \rm  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}  = 25

 : \implies \rm  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times  \not{x} \times  \dfrac{1}{ \not{x}}  = 25

 \rm :  \implies \:  {x}^{2}  +  \dfrac{1}{x {}^{2} }  + 2 = 25

 \rm  :  \implies {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 25 - 2

 \rm  :  \implies {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 23

  \underline{\rm \: so \: value \: of \: \rm   \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} } \:  is \: 23}

Similar questions