Math, asked by sayeedmuhammednihal, 10 months ago

if x+1÷x=5 then x^2+1÷x^2=? ​

Answers

Answered by Anonymous
11

Solution :-

x + 1/x = 5

Squaring on both sides

⇒ (x + 1/x)² = 5²

⇒ (x)² + (1/x)² + 2(x)(1/x) = 25

[ Because (a + b)² = a² + b² + 2ab ]

⇒ x² + 1²/x² + 2 = 25

⇒ x² + 1/x² + 2 = 25

⇒ x² + 1/x² = 25 - 2

⇒ x² + 1/x² = 23

Therefore the value of x² + 1/x² is 23.

Answered by Sharad001
11

Question :-

 \sf \:  \: if \:  \:  \:  x +  \frac{1}{x}  = 5 \: then \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \\

Answer :-

 \red{ \leadsto} \boxed{  \sf \green{ {x}^{2}}  + \orange{  \frac{1}{ {x}^{2} }}  = 23} \:

Formula used :-

→ (a + b)² = a² + b² + 2ab

Explanation :-

We have :

 \leadsto \sf x +  \frac{1}{x}  = 5 \\  \\ \mathfrak{ squaring \: on \: both \: sides} \\  \\  \leadsto \sf  { \bigg (x +  \frac{1}{x}   \bigg) }^{2}  =  {5}^{2}  \\  \\  \leadsto \sf {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 25 \\  \\  \leadsto  \sf{ \: {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 25} \\  \\  \leadsto \sf  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 25 - 2 \\  \\  \leadsto \boxed{  \sf{x}^{2}  +  \frac{1}{ {x}^{2} }  = 23}

Hope it will help you .

Similar questions