Math, asked by rahul4377, 11 months ago

if x+1/x=5find x^4 +1/x^4​

Answers

Answered by gujjarankit
0

Answer:

hey mate here is ur answer hope u find it helpful

Attachments:
Answered by Brainlyconquerer
10

Answer:

\boxed{\bold{\mathsf{{x}^{4}  +  \frac{1}{ {x}^{4} }  =527}}}

Step-by-step explanation:

Given

 {x}^{4}   +  \frac{1}{ {x}^{4} }

To find:

x +  \frac{1}{x}  = 5

Apply squaring

{(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(x)( \frac{1}{x} )

Now put in the known values

 {5}^{2}  =  {x}^{2}  +  \frac{1}{{x}^{2} }  + 2 \\  \\ 25 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23

Now again square both sides

{( {x}^{2}  +  \frac{1}{ {x}^{2} } ) }^{2}  =   {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2( {x)}^{2} ( \frac{1}{ {x}^{2} } )

Now again put in the known values

 {23}^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \\  \\ 529  = {x}^{4}  +  \frac{1}{ {x}^{4} }   + 2 \\  \\ 529 - 2 = {x}^{4}  +  \frac{1}{ {x}^{4} }   \\  \\ {x}^{4}  +  \frac{1}{ {x}^{4} }   = 527

\rule{200}{1}

\boxed{\underline{\underline{\bold{\mathsf{Identities\:used}}}}}:-

❇(a + b)² = a² + b² + 2ab

Similar questions