Math, asked by Chaudharyj732, 1 year ago

If x+1/x=6 find the value of x+1/x

Answers

Answered by Anonymous
14

Correct Question :

If x\:+\:\dfrac{1}{x}\:=\:6 then find {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }

Solution :

x\:+\:\dfrac{1}{x}\:=\:6

Now,

Squaring on both sides ..

\bigg(x \:  +  \:  \dfrac{1}{x}\bigg)^{2} \:  =  \: ( {6)}^{2}

We know that,

(a + b)² = a² + b² + 2ab

Use the above identity to find the value of x² + 1/x².

{x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  +  \: 2x \:  \times  \:  \dfrac{1}{x}  \:  =  \: 36

{x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  + \: 2 \: =  \: 36

{x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \: =  \: 36 \: - \: 2

{x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \: =  \: 34

Answer :

On solving we get, x² + 1/x² = 34.

_______________________________

Answered by QualityAnswerer
1

\huge\huge\boxed{Answer:-}

Correct Question is

if \: x +  \frac{1}{x}  = 6 \: so....find \: \: x {}^{2}  +  \frac{1}{x {}^{2} }

Answer:-

x +  \frac{1}{x}  = 6

We have to square both the sides:-

x +  \frac{1}{x {}^{2} } = ((6)) {}^{2}

\star\boxed{Identity/Rule:-}\star

((a + b)) {}^{2}  = a {}^{2}  + b {}^{2}  + 2ab =  >  \: identity

We can use this identity as given above to do this sum that is [x² + 1/x²]

STEPS:-

 = x {}^{2}  +  \frac{1}{x {}^{2} }  +  2x×\frac{1}{x}  =  > 36

 = x {}^{2}  +  \frac{1}{x {}^{2} }  + 2 = >  36

 = x {}^{2}  +  \frac{1}{x {}^{2} }  = 36 - 2

 = x {}^{2}  +  \frac{1}{x {}^{2} }  => 34

Therefore,

x { }^{2}  +  \frac{1}{x {}^{2} } = 34


mysticd: Many mistakes , please check it again
Similar questions