Math, asked by BrainCat, 3 months ago

If x-1/x=6 , find the value of x+1/x

Answers

Answered by 7389
0

Answer:

x+1/x=9 equation(1)

On the square of both sides

(x+1/x)^2= x^2 +( 1/x) ^2 +2. equation (2)

Putting the value of equation 1 into equation 2

(9)^2=x^2+(1/x)^2+2

x^2+(1/x)^2=81–2

x^2+( 1/x)^2=79 equation (3)

(x-1/x)^2= x^2+(1/x)^2–2 equation (4)

Putting the value of equation 3 into equation 4

(x-1/x)^2=79–2

(x-1/x)^2=77

x-1/x=√77

Answered by MagicalBeast
6

Given :

\sf \: x \:-\: \dfrac{1}{x}  \: =  \: 6

To find :

\sf \: x \: + \: \dfrac{1}{x}

Identity used :

  • (a+b)² = a² + b² + 2ab
  • (a-b)² = a² + b² - 2ab

Solution :

We know that

\sf \:  \: x \:-\: \dfrac{1}{x} \:  = 6

On Squaring both side , we get

\sf \implies \: \bigg[  \: x \:-\: \dfrac{1}{x}  \: \bigg]^2 \:  = \:  6^2 \\  \\  \\ \sf \implies \: \bigg[  \: x^{2}  \: + \bigg(\dfrac{1}{ {x} } \bigg) ^{2}   \:  - \:  \bigg( 2 \times x \times  \dfrac{1}{x} \bigg) \:  \bigg] \:  = \:  36\\  \\  \\ \sf \implies \: \bigg[  \: x^{2}  \: + \dfrac{1}{ {x}^{2}}   \:  - 2 \:  \bigg] \:  = \:  36\\ \\ \sf \implies \:  \: x^{2}  \: + \dfrac{1}{ {x}^{2}}   \:  = 36 + 2 \\  \\  \sf \implies \:  \: x^{2}  \: + \dfrac{1}{ {x}^{2}}   \:  = 38 \:  \:  \: ........equation1

Now we need to find x + (1/x)

\sf \implies \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg)^{2}  \:  =   \:  \bigg[\: x^{2}  \: +  \:  \bigg(\dfrac{1}{x} \bigg)^{2}   +  \:  \bigg(2 \times x \times  \dfrac{1}{x} \bigg) \: \bigg] \:  \:   \\  \\  \sf \implies \: \bigg( \: x \:  +  \dfrac{1}{x}  \bigg)^{2}  \:  =   \:  \: x^{2}  \: +  \: \dfrac{1}{x^{2}}  \:   +  \: 2 \:   \\  \\ \sf \: on \: putting \: value \: of \: x^{2}  \: +  \: \dfrac{1}{x^{2}} \: from \: equation \: 1 \: we \: get \:  \\  \\ \sf \implies \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg)^{2}  \:  =  38 \:  + \:  2 \\  \\ \sf \implies \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg)^{2}  \:  =   \: 40 \\  \\  \sf \implies \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg) =  \sqrt{40}  \\  \\  \sf \implies \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg) \:  =  \: 2 \sqrt{10}   \\  \\  \sf \implies \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg) \:  =  \: 6.32

ANSWER :

\sf \bold{ \: \:  \bigg( \: x \:  +  \dfrac{1}{x}  \bigg) \:  =  \:  \sqrt{40}  \:  =  \: 2 \sqrt{10}  \:  \:  = 6.32}

Similar questions