If x + 1/x=6, find the value of x^4+ 1/x^4
Answers
EXPLANATION.
⇒ x + 1/x = 6.
As we know that,
Squaring on both sides of the equation, we get.
⇒ (x + 1/x)² = (6)².
⇒ x² + 1/x² + 2(x)(1/x) = 36.
⇒ x² + 1/x² + 2 = 36.
⇒ x² + 1/x² = 36 - 2.
⇒ x² + 1/x² = 34.
Again squaring on both sides of the equation, we get.
⇒ (x² + 1/x²)² = (34)².
⇒ x⁴ + 1/x⁴ + 2(x²)(1/x²) = 1156
⇒ x⁴ + 1/x⁴ + 2 = 1156.
⇒ x⁴ + 1/x⁴ = 1156 - 2.
⇒ x⁴ + 1/x⁴ = 1154.
Step-by-step explanation:
Given:-
To find:-
Solution:-
We have,
Squaring on both sides, we get
Now,
Again, squaring on both sides, we get
Now,
Answer:-
Know more Algebraic Identities:-
(a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
I hope it's help you....☹️