Math, asked by jascaran1, 2 months ago

If x + 1/x=6, find the value of x^4+ 1/x^4

Answers

Answered by amansharma264
5

EXPLANATION.

⇒ x + 1/x = 6.

As we know that,

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (6)².

⇒ x² + 1/x² + 2(x)(1/x) = 36.

⇒ x² + 1/x² + 2 = 36.

⇒ x² + 1/x² = 36 - 2.

⇒ x² + 1/x² = 34.

Again squaring on both sides of the equation, we get.

⇒ (x² + 1/x²)² = (34)².

⇒ x⁴ + 1/x⁴ + 2(x²)(1/x²) = 1156

⇒ x⁴ + 1/x⁴ + 2 = 1156.

⇒ x⁴ + 1/x⁴ = 1156 - 2.

⇒ x⁴ + 1/x⁴ = 1154.

Answered by Salmonpanna2022
5

Step-by-step explanation:

Given:-

 \tt{x +  \frac{ 1}{x}  = 6} \\  \\

To find:-

 \tt{The \:  value \:  of \:   \: {x}^{4}  +  \frac{1}{ {x}^{4} } }  = \:  \huge{ ?}\\  \\

Solution:-

We have,

 \tt{x +  \frac{ 1}{x}  = 6} \\  \\

Squaring on both sides, we get

 \tt{ \bigg({x}^{2}  +  \frac{ 1}{{x}^{2} } \bigg)^{2}   =  {6}^{2} } \\  \\

 \tt{⬤Using  \: algebraic \:  Identity} \\

 \tt{(a + b {)}^{2}  = (a + b)(a  + b) =  {a}^{2}  + 2ab + b} \\  \\

Now,

⟹  \tt{{x}^{2}  + 2 \times x \times  \frac{1}{x}  +  \bigg( \frac{1}{x}  \bigg)^{2}  = 36 }\\  \\

⟹ \tt{ {x}^{2}  + 2 \times  \cancel{x} \times  \frac{1}{ \cancel{x}}  +  \frac{1}{ {x}^{2} } = 36 } \\  \\

⟹  \tt{{x}^{2}  + 2 +  \frac{1}{ {x}^{2} }  = 36} \\  \\

⟹  \tt{{x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2} \\  \\

⟹ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34 \\  \\

Again, squaring on both sides, we get

 \tt{ \bigg( {x}^{2}  +  \frac{1}{ {x}^{2} } \bigg)^{2}   = (34 {)}^{2} } \\  \\

\tt{⬤Using  \: algebraic \:  Identity} \\

 \tt{(a + b {)}^{2}  = (a + b)(a  + b) =  {a}^{2}  + 2ab + b} \\  \\

Now,

⟹ \tt{( {x}^{2}  {)}^{2}  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  +  \bigg( \frac{1}{ {x}^{2} }  \bigg)^{2}  = 1156 }\\  \\

⟹ \tt{ {x}^{4}  + 2 \times   \cancel{{x}^{2}}  \times  \frac{1}{ \cancel{ {x}^{2}} }  +   \frac{1}{ {x}^{4} }  = 1156 }\\  \\

⟹ \tt{ {x}^{4}  + 2 +  \frac{1}{ {x}^{4} }  = 1156} \\  \\

⟹ \tt{ {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1156 - 2} \\  \\

⟹ \tt{ {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1154} \\  \\

Answer:-

 \tt{Hence, the \:  value  \: of \:  \:  {x}^{4}  +  \frac{1}{ {x}^{4} } = 1154 } \\  \\

Know more Algebraic Identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

I hope it's help you....☹️

Similar questions