Math, asked by luckypal2626, 4 months ago

if x+1/x =6 find value of x^2+1/x^2

Answers

Answered by Anonymous
6

Answer:

  • x² + 1/x² = 34

Given:

  • x+1/x =6

To find:

  • x² + 1/x²

Solution :

Formula used :

\sf \underline{(a + b) {}^{2}   +   {a}^{2}  +  {b}^{2}  = 2ab}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ :  \implies \:  {x}+  \dfrac{1}{ {x} }=\:6}

Now squaring both sides we get,

 \:  \: \  \:  \:  \:  \:  \sf{ :  \implies \:  ( {x}^{2}  +  \dfrac{1}{x} ) {}^{2} =  {6}^{2} }

  • As we know that 6 × 6 = 36

 \:  \:  \:  \:  \: \: \sf{ :  \implies \:  {x}^{2}  +   \dfrac{1}{ {x}^{2} }  + 2(x) (\dfrac{1}{x}) = 36}

 \:  \:  \:  \:  \: \: \sf{ :  \implies \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 36 - 2}

 \:  \:  \:  \:  \: \: \sf{ :  \implies \:  {x}^{2}  +   \dfrac{1}{ {x}^{2} }  = 34}

\sf \underline{(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}   +  2ab}

 \sf \underline{ \therefore  \:  {x}^{2}  +   \dfrac{1}{ {x}^{2} }  = 34}

More Explanation :

  \:  \:  \: \sf{ :  \implies(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}   +  2ab}

\:  \:  \: \sf{ :  \implies \: a {}^{2} -  b {}^{2}    =  (a + b)(a - b)}

\:  \:  \: \sf{ :  \implies(a  - b) {}^{2}  =  {a}^{2}   -   {b}^{2}   +  2ab}

\:  \:  \: \sf{ :  \implies \: a  {}^{3} + b {}^{3}   =  (a + b)( {a}^{2}  - ab +  {b}^{2)} }

\:  \:  \: \sf{ :  \implies \: a  {}^{3}  - b {}^{3}   =  (a  -  b)( {a}^{2}   + ab +  {b}^{2)} }

Answered by 2008shrishti
0

Answer:

Answer:

x² + 1/x² = 34

Given:

x+1/x =6

To find:

x² + 1/x²

Solution :

Formula used :

Now squaring both sides we get,

As we know that 6 × 6 = 36

More Explanation :

Step-by-step explanation:

Hope this answer will help you✌

Similar questions