Math, asked by ayushkumar05102007, 1 day ago

if x + 1/x = 6 find x^3 - 1/x^3​

Answers

Answered by shrutisharma07
1

Answer:

It is given that x−

x

1

=6

(i)

Cube both sides of the given equation,

(x−

x

1

)

3

=6

3

x

3

x

3

1

−3×x×

x

1

(x−

x

1

)=216

x

3

x

3

1

−3(6)=216

x

3

x

3

1

−18=216

x

3

x

3

1

=234

(ii)

Square both sides of the given equation,

(x−

x

1

)

2

=6

2

x

2

+

x

2

1

−2×x×

x

1

=36

x

2

+

x

2

1

−2=36

x

2

+

x

2

1

=38

Answered by amansharma264
7

EXPLANATION.

⇒ (x + 1/x) = 6.

As we know that.

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (6)².

⇒ x² + 1/x² + 2(x)(1/x) = 36.

⇒ x² + 1/x² + 2 = 36.

⇒ x² + 1/x² = 36 - 2.

⇒ x² + 1/x² = 34.

As we know that,

Formula of :

⇒ (x - 1/x)² = x² + 1/x² - 2(x)(1/x).

⇒ (x - 1/x)² = x² + 1/x² - 2.

Put the value of x² + 1/x² = 34 in the equation, we get.

⇒ (x - 1/x)² = 34 - 2.

⇒ (x - 1/x)² = 32.

⇒ (x - 1/x) = √32.

⇒ (x - 1/x) = 4√2.

As we know that,

⇒ (x - 1/x) = 6.

Cubing on both sides of the equation, we get.

⇒ (x - 1/x)³ = (6)³.

⇒ x³ - 3(x)²(1/x) + 3(x)(1/x)² - 1/x³ = 216.

⇒ x³ - 1/x³ - 3x + 3/x = 216.

⇒ x³ - 1/x³ - 3(x - 1/x) = 216.

Put the value of x - 1/x = 4√2 in the equation, we get.

⇒ x³ - 1/x³ - 3(4√2) = 216.

⇒ x³ - 1/x³ - 12√2 = 216.

⇒ x³ - 1/x³ = 216 + 12√2.

Similar questions