Math, asked by raaghavi6364, 11 months ago

If x+1/x=6 find x2+1/x2,x3+1/x3,x4+1/x4

Answers

Answered by sanketj
1

x +  \frac{1}{x}  = 6 \\   {( x +  \frac{1}{x} ) }^{2}  =  {(6)}^{2}  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x( \frac{1}{x} ) = 36 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34 \\  \\  {( {x}^{2} +  \frac{1}{ {x}^{2} })  }^{2}  =  {(34)}^{2}  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 {x}^{2}  ( \frac{1}{ {x}^{2} } ) = 1156 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 1156 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1154 \\  \\ x +  \frac{1}{x}  = 6 \\  {(x +  \frac{1}{x} )}^{3}  =  {(6)}^{3}  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3x( \frac{1}{x} )(x +  \frac{1}{x} ) = 216 \\  {x}^{3}  +  \frac{1}{{x}^{3} }  + 3(6) = 216 \\  {x}^{3} +  \frac{1}{ {x}^{3} }   + 18 = 216 \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 198

Similar questions