Math, asked by Murrsaid3949, 1 year ago

If (x-1/x) = 6, then find (x2 + 1/x2) and (x + 1/x)

I found (x2+ 1/x2) = 38

Now how to find (x + 1/x) ?

Answers

Answered by aadi93
214
HEY HERE IS YOUR ANSWER ☺☺☺☺

((x - \frac{1}{x}) = 6 \\ \\ {(x \ - \frac{1}{x}) }^{2} = {(6) }^{2} \\ \\ ( {x - \frac{1}{x}) }^{2} = {x}^{2} + \frac{1}{ {x}^{2} } - 2 \\ \\ {(6)}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } - 2 \\ \\ 36 + 2 = {x}^{2} + \frac{1}{ {x}^{2} } \\ \\ 38 = {x}^{2} + \frac{1}{ {x}^{2} } \: \:

38 = x^2 +1/x^2

(x + \frac{1}{x} ) {}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2 \\ \\ (x + \frac{1}{x} ) {}^{2} = 38 + 2 \\ \\ (x + \frac{1}{x} ) {}^{2} = 40 \\ \\ (x + \frac{1}{x} ) = \sqrt{40} \\ \\ (x \ + \frac{1}{x} ) = \sqrt{2 \times 2 \times 2 \times 5 } \\ \\ (x + \frac{1}{x} ) = 2 \sqrt{10}

HOPE IT HELPS ☺☺☺☺☺
PLEASE MARK AS BRAINLIEST
#AADI 93

aadi93: please mark as brainliest
Answered by OrethaWilkison
50

Answer:

If x -\frac{1}{x}=6             .....[1]

then:

find x^2+\frac{1}{x^2}

Squaring equation [1] both sides we get;

(x -\frac{1}{x})^2=6^2

Using identity rule:

(a-b)^2 =a^2+b^2-2ab

then;

x^2+\frac{1}{x^2}-2x \cdot \frac{1}{x}= 36

Simplify:

x^2+\frac{1}{x^2}-2 =36

Add 2 to both sides we get;

x^2+\frac{1}{x^2}=38

Now, find  x+\frac{1}{x}

(x+\frac{1}{x})^2 = x^2+\frac{1}{x^2}+2x \cdot \frac{1}{x}

(x+\frac{1}{x})= x^2+\frac{1}{x^2}+2

Substitute the value of x^2+\frac{1}{x^2}=38 in above equation we have:

(x+\frac{1}{x})=38+2

Simplify:

(x+\frac{1}{x})= 40

Taking square root both sides we have;

x+\frac{1}{x} = \sqrt{40}=2\sqrt{10}

Therefore, the values of x^2+\frac{1}{x^2}=38 and  x+\frac{1}{x} = 2\sqrt{10}

Similar questions