Math, asked by poojagawali299, 9 months ago

If x^+1/x^=66 then find x-1/x​

Answers

Answered by gsvprasad
1

Given -  x^{2} +  \frac{1}{ x^{2} } = 66

We have the identity,

x^{2} +  \frac{1}{ x^{2} } =   (x - \frac{1}{x})^{2} + 2

(Derived from the original identity,  

(a - b)^{2} =  a^{2} +  b^{2}  - 2ab )

By putting values,

(x - \frac{1}{x})^{2} + 2 = 66

(x- \frac{1}{x}) ^{2}  = 66 - 2

(x- \frac{1}{x}) ^{2}  = 64

x -  \frac{1}{x}  =  \sqrt{64}  

x - \frac{1}{x}  = +/- 8

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ {x}^{2}  + \frac{1}{ {x}^{2} }   = 66} \\

 \bf \underline{To find-} \\

 \sf{the \: value \: of  :\: x -  \frac{1}{x}  = \:  ?} \\

 \bf \underline{Solution-} \\

  \sf {\bigg(x -  \frac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2}  }   - 2 \:  \:  \: \:  \:  \:    [ \because \: (a - b {)}^{2}  =  {a}^{2} +  {b}^{2}  - 2ab ]} \\  \\  = 66 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \: \: \:\rm{ [ \because {x}^{2}   +  \frac{1}{ {x}^{2}} = 66 \:(Given)  ]  } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:= 64 \\

 \sf{ \therefore \:  \:  \:  \:  \:  \: x -  \frac{1}{x} =  \sqrt{64} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ± \: 8 \\

 \bf\underline{Hence,the \: value \: of :  \: x -  \frac{1}{x}  \: is  \: ± \: 8.} \\

Similar questions
Math, 1 year ago