If x-1/x = 7 , evaluate x^2 + 1/x^2 ,
x^4 + 1/x^4.
Answers
Answered by
332
Solution :-
→ (x - 1/x) = 7
Squaring both sides we get,
→ (x - 1/x)² = 7²
using (a - b)² = a² + b² - 2ab in LHS ,
→ x² + 1/x² - 2 * x * 1/x = 49
→ x² + 1/x² - 2 = 49
→ x² + 1/x² = 49 + 2
→ x² + 1/x² = 51 (Ans.)
Now,
→ x² + 1/x² = 51
Squaring both sides we get,
→ (x² + 1/x²)² = 51²
using (a + b)² = a² + b² + 2ab in LHS ,
→ x⁴ + 1/x⁴ + 2 * x² * 1/x² = 2601
→ x⁴ + 1/x⁴ + 2 = 2601
→ x⁴ + 1/x⁴ = 2601 - 2
→ x⁴ + 1/x⁴ = 2599 (Ans.)
Answered by
0
Answer:
Step-by-step explanation:
x-1/x=7
x-1=7x
6x=1
x=1/6
1/6^2 + 6^2
=> (1+36^2)/36
=>1297/36
1/6^4 + 6^4
=> (1+1296^2)/1296
=>46657/1296
Similar questions
Music,
3 months ago
Math,
3 months ago
Geography,
11 months ago
Social Sciences,
11 months ago
Math,
11 months ago