Math, asked by angel5558, 11 months ago

if (x+1/x=7,find the value of the following : x4+1/x4​

Answers

Answered by LovelyG
7

Answer:

\large{\underline{\boxed{\sf 2207}}}

Step-by-step explanation:

Given that ;

 \tt x +  \dfrac{1}{x}  = 7

On squaring both sides,

 \implies \tt \left (x +  \frac{1}{x} \right ) ^{2}  = (7) {}^{2}  \\  \\  \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \: . \:x  \: . \:  \frac{1}{x}  = 49 \\  \\ \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 49 \\  \\ \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 49 - 2 \\  \\ \implies \tt  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 47

Again, on squaring both sides,

\implies \tt \left({x}^{2}  +  \frac{1}{ {x}^{2} }  \right)^{2}  = (47) {}^{2}  \\  \\ \implies \tt  ({x}^{2} ) {}^{2}  +  \frac{1}{ ({x}^{2} ) {}^{2} }  + 2 \:.  \:  {x}^{2}  \:  \:  \frac{1}{ {x}^{2} }  = 2209 \\  \\ \implies \tt  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 2209 \\  \\ \implies \tt  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2209 - 2 \\  \\  \red{\boxed{ \therefore \:  \bf {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2207}}

Answered by BrainlyConqueror0901
106

Answer:

\huge{\red{\boxed{\boxed{\green{\sf{x^{4}+\frac{1}{x^{4}}=2207}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}}

{  \:  \:  \:  \:  \:  \pink  {given}} \\ {\boxed {\green{ x +  \frac{1}{x}  = 7}}} \\  \\  \:  \:  \:  { \blue {to\: find}} \\  {\boxed{ \red{ {x}^{4}  +  \frac{1}{ {x}^{4} } =  ?}}}

 \:  \:  \:  \:  \:  \: \:  use \: formula \:  \\  { \green{ \boxed{ ({x + y})^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy }}} \\  x + \frac{ 1 }{x}  = 7 \\ squaring \: both \: side \\ ( {x +  \frac{1}{x} })^{2}  =  {7}^{2}  \\   {x}^{2}  +   ({ \frac{1}{x} })^{2}  + 2 \times x \times  \frac{1}{ x}  = 49 \\   {x}^{2}  +(  { \frac{1}{x} })^{2}  = 49 - 2 \\  {x}^{2}  +  ( { \frac{1}{x} })^{2}  = 47 -  -  -  -  - (1) \\  \\ again \: both \: side \: squaring \:  \\ ( { {x}^{2})^{2} +   ({ \frac{1}{x^{2} } } )}^{2}  =  {47}^{2}  \\   {x}^{4}  +  \frac{1}{x ^{4} }  + 2  \times {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 2209 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }   + 2 = 2209 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2209 - 2 \\  ( {x}^{4}  +  \frac{1}{ {x}^{4} } ) = 2207

\huge{\red{\boxed{\boxed{\green{\sf{x^{4}+\frac{1}{x^{4}}=2207}}}}}}

_________________________________________

Similar questions