Math, asked by ashwin2146, 1 year ago

if x+1/x=7 the find the value of x^3+1/x^3, x^2+1/x^2​

Answers

Answered by adarshagarwallaa
6

answer is 47

plz mark as brainliest

Attachments:

ashwin2146: this image is not clear
adarshagarwallaa: sending again
Answered by Anonymous
6

x +  \frac{1}{x}  = 7

(x +  \frac{1}{x} )  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2

 {7}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2

49 = {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2

49 - 2 = {x}^{2}  +  \frac{1}{ {x}^{2} }

 \fbox{ {x}^{2} +  \frac{1}{ {x}^{2} }  = 47}

( {x}+  \frac{1}{ x })^{3}  =   {x}^{3}  +  \frac{1}{ {x}^{3} }   + 3(x +  \frac{1}{x} )

 {7}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(7)

343 =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 21

 {x}^{3}  +  \frac{1}{ {x}^{3} }  = 343 - 21

 \fbox{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 322}


ashwin2146: s f
ashwin2146: s correct
Similar questions