Math, asked by ranveersinght52, 11 months ago

If x+1/x=7, then find the value of x^3 + 1/x^3​

Answers

Answered by Anonymous
12

\bold{ANSWER}

\rm{322}

\mathbb{EXPLANATION}

\rm{x+\frac{1}{x}}=\rm{7}

\rm{\right(x+\frac{1}{x}\left)}=\rm{\right(7\left)}

\textit{Cubing\:On\:Both\:Sides\:We\:Have}

\rm{\right(x+\frac{1}{x}\left)^3}=\rm{\right(7\left)^3}

\rm{x^3\:+\frac{1}{x^3}+3\right(x+\frac{1}{x}\left)}=[tex]\rm{\right(7\left)^3}

\rm{x^3\:+\frac{1}{x^3}+3/right(7/left)}=[tex]\rm{\right(7\left)^3}

\rm{x^3\:+\frac{1}{x^3}}=[tex]\rm{\right(343-21\left)}

\therefore \rm{x^3\:+\frac{1}{x^3}}=

\rm{\right(322\left)}

Answered by sangeetakarwasra9630
0

Answer:

The above answer is right I saw that .

Step-by-step explanation:

Please mark as brilliant answer .

Similar questions