Math, asked by kannanchellappan2012, 1 year ago

if x+1/x=7,then find the value of x^3+1/x^3​

Answers

Answered by Anonymous
26

x + \dfrac{1}{x} = 7

_________ [GIVEN]

• We have to find the value of x³ + \dfrac{1}{ {x}^{3} }

________________________________

Solution:

=> x + \dfrac{1}{x} = 7

• Take cube on both sides

=> (  {x \:  +  \:  \dfrac{1}{x}) }^{3} = (7)³

=> x³ + \dfrac{1}{ {x}^{3} } + 3 (\dfrac{x}{x}) (x \:  +  \:  \dfrac{1}{x}) = 343

=> x³ + \dfrac{1}{ {x}^{3} } + 3(7) = 343

=> x³ + \dfrac{1}{ {x}^{3} } + 21 = 343

=> x³ + \dfrac{1}{ {x}^{3} } = 343 - 21

______________________________

x³ + \dfrac{1}{ {x}^{3} } = 322

___________ [ANSWER]

Answered by Anonymous
28

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{ \sf  {x}^{3} +  { \dfrac{1}{ {x}^{3} }}  = 322}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :-  \tt x +  \dfrac{1}{x} = 7

To find :-  \tt x^3 +  \dfrac{1}{x^3}

Solution :-

 \tt x +  \dfrac{1}{x} = 7

By cubing on both sides

 \tt (x +  \dfrac{1}{x})^{3} = {7}^{3}

 \tt (x +  \dfrac{1}{x})^{3} = 7 \times 7 \times 7

 \tt (x +  \dfrac{1}{x})^{3} = 49 \times 7

 \tt (x +  \dfrac{1}{x})^{3} = 343

In Left Hand Side of the above equation

We know that (a + b)³ = a³ + b³ + 3ab(a + b)

Here a = x, b = 1/x

By sustituting the values in the identity we have

 \tt  {(x)}^{3} +  {( \dfrac{1}{x})}^{3} + 3(x)( \dfrac{1}{x})(x +  \dfrac{1}{x}) = 343

 \tt  {x}^{3} +  { \dfrac{ {1}^{3} }{ {x}^{3} }} + 3(x)( \dfrac{1}{x})(x +  \dfrac{1}{x}) = 343

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }} + 3( \cancel x)( \dfrac{1}{ \cancel x})(x +  \dfrac{1}{x}) = 343

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }} + 3(1)(x +  \dfrac{1}{x}) = 343

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }} + 3(x +  \dfrac{1}{x}) = 343

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }} + 3(7) = 343

[Since given that  \bf x + \dfrac{1}{x} = 7 ]

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }} + 21 = 343

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }}  = 343 - 21

 \tt  {x}^{3} +  { \dfrac{1}{ {x}^{3} }}  = 322

\Huge{\boxed{ \sf  {x}^{3} +  { \dfrac{1}{ {x}^{3} }}  = 322}}

Similar questions