Math, asked by kukhreja, 1 year ago

if (x-1/x) =7 , then find the value of (x²+1/x²)​

Answers

Answered by kiki9876
8

SOLUTION:-

x -  \frac{1}{x}  = 7 \\  \\ {(x -  \frac{1}{x}) }^{2}  =  {7}^{2}  \\  \\  {x}^{2} +  \frac{1}{ {x}^{2} }   - 2 \times x \times  \frac{1}{x}  = 49 \\  \\  {x}^{2}  +   \frac{1}{ {x}^{2} }  = 49 +2  \\   \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 51

ANSWER=51

Answered by Anonymous
17

\large{\mathfrak{\underline{\underline{Answer :-}}}}

51 Answer

Given :-

{ \bf{x -  \frac{1}{x}  = 7}}

✯ Let this equation be equation 1.

To Find :-

\large{ \bf {x}^{2}  +  \frac{1}{ {x}^{2} }}

Solution :-

_______________[Using equation 1]

Squaring both side

\large{\bf{(x \: - \: {\frac{1}{x}})^{2} \: = \: 7^{2}}}

✯ Using Identity :-

\huge{\sf{\boxed{\boxed{(a - b) ^{2} = a^{2} + b^{2} - 2(a)(b)}}}}

\large{\sf{{x}^{2}  +  \frac{1}{ {x}^{2} }  \:  \:  - 2 \times x \times  \frac{1}{x}  =  \:  {7}^{2}}}

\large{\sf{{x}^{2} \:  +  \frac{1}{{x}^{2}}  - 2 \times \cancel{x} \times    \cancel\frac{1}{x}  \:  =   \: 49}}

\large{\sf{{x}^{2}   +  \frac{1}{{x}^{2}}  =  \: 49 \:  +  \: 2}}

\large{\sf{{x}^{2} +  \frac{1}{{x}^{2}} = 51}}

{\bf{\huge{\boxed{{x}^{2}  +  \frac{1}{ {x}^{2}}  =  \: {\boxed{51}}}}}}

Similar questions