Math, asked by shikshasharma10, 5 months ago

if X+1/X=7 then find x³+1/x³​

Answers

Answered by SparklingBoy
4

Answer:

Firstly we will find x using

 \large{ \frac{x + 1}{x} = 7 }

As

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large{ \frac{x + 1}{x} = 7 } \\  \\ \implies x + 1 = 7x \\  \\  \implies \boxed{ x =  \frac{1}{6} }

Now We can find reqrd value as:)

 {x}^{3}  +  \large\frac{1}{ {x}^{3} }  \\  \\  =216 +   \frac{1}{216}  \\ \\   =  \frac{46656 + 1}{216}  \\  \\  = \frac{ 46657}{216}

WHICH IS REQUIRED ANSWER

Answered by ItzAritra
3

\huge\fbox\green{\fbox\green{Solution:-}}

\huge\fbox\green{\fbox\blue{Given:-}}

x  +  \frac{1}{x}  = 7

\huge\fbox\green{\fbox\purple{To \: Find:-}}

 {x}^{3}  +    {\frac{1}{x} }^{3}  = ?

\huge\fbox\green{\fbox\pink{By \: the \: problem}}

(x +  \frac{1}{x} ) = 7 \\  =  >  {(x +  \frac{1}{x} )}^{3}  =  {7}^{3}   -   -  - - (cubing \: both \: sides)\\  =  >  {x}^{3}  +    \frac{1}{ {x}^{3} }  + 3  \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 343 \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 7 = 343  -  - -  - (x +  \frac{1}{x} ) = 7 \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 343 - 21 \\  =  322(ans)

\huge\fbox\blue{\fbox\pink{formula \: used \: here}}

\huge\fbox\green{\fbox\blue{Answer = 322}}

 {(x +  \frac{1}{x} )}^{3}  \\  =  {x}^{3}  +  \frac{1}{({x})^3}  + 3 \times x \times  \frac{1}{x}  \times (x +  \frac{1}{x)}

\fbox\green{\fbox\orange{Done \: by \: Aritra \: kar}}

Similar questions