if x+1/x=7 then find x³+1/x³
Answers
Answered by
4
Your answer is ---
Given,
![x + \frac{1}{x} = 7 x + \frac{1}{x} = 7](https://tex.z-dn.net/?f=x+%2B++%5Cfrac%7B1%7D%7Bx%7D++%3D+7)
We have ,
![{x}^{3} + \frac{1}{ {x}^{3} } = {(x + \frac{1}{x}) }^{3} - 3(x + \frac{1}{x}) \\ \\ = {7}^{3} - 3 \times 7 \\ \\ = 373 - 21 \\ \\ = 352 {x}^{3} + \frac{1}{ {x}^{3} } = {(x + \frac{1}{x}) }^{3} - 3(x + \frac{1}{x}) \\ \\ = {7}^{3} - 3 \times 7 \\ \\ = 373 - 21 \\ \\ = 352](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B3%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B3%7D+%7D++%3D++%7B%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D%29+%7D%5E%7B3%7D++-+3%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D%29+%5C%5C++%5C%5C++%3D++%7B7%7D%5E%7B3%7D++-+3+%5Ctimes+7+%5C%5C++%5C%5C++%3D+373+-+21+%5C%5C++%5C%5C++%3D+352)
【 Hope it helps you 】
Given,
We have ,
【 Hope it helps you 】
Similar questions