Math, asked by chethanchandra, 3 months ago

If x+1/x=7 then the value of x^3+1/x^3​

Answers

Answered by pinkyeva
5

Answer:

1/x=7 then the value of x^3+1/x^3

Answered by 12thpáìn
0

Given

  •  \sf \: x +  \dfrac{1}{x}  = 7

To Find

  •  \sf \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }  =

Solution

 \mathfrak{ \: as \: we \: know \: that}

 \sf \: (a+b)³=a³+b³+3ab(a+b)

 \sf{On  \: Subtuting \:  The  \: value  \: of  \: x+ \dfrac{1}{x} \:  in  \: Formula}

{→ \sf \:  \left(x +  \dfrac{1}{x}  \right)^{3}  =  {x}^{3} +  \dfrac{1}{ {x}^{3} }  + 3 \times x \times  \dfrac{1}{x} (x +  \dfrac{1}{x})  }

{ →\sf \: 7^{3}  =  {x}^{3} +  \dfrac{1}{ {x}^{3} }  + 3  \times 7  }

{ →\sf \: 343 - 21  =  {x}^{3} +  \dfrac{1}{ {x}^{3} }   }

{ ~~~~~~\underline{\underline{\boxed{\sf \:   {x}^{3} +  \dfrac{1}{ {x}^{3} } = \gray{322   }}}}} \\  \\  \\  \\

More Useful Identity

\sf(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

\sf(a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab

\sf(a + b)(a - b)  =  {a}^{2}   -   {b}^{2}

\sf(a + b + c)^{2}  =  {a}^{2}  +  {b}^{2}  + {c}^{2} 2ab + 2bc + 2ca

\sf(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)

\sf(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)

\sf a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)

\sf a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)

Similar questions