Math, asked by raj213000, 10 months ago

if x-1/x=7 then what is the value of x2+1/x2​

Answers

Answered by anjalibalajee2009
1

Answer:

x²+1/x² = 51

Explanation:

Given x - 1/x = 7 ---(1)

______________________

We know the algebraic identity:

a²+b²-2ab = (a-b)²

Or

a²+b² = (a-b)²+2ab

______________________

Now,

x²+1/x²

= (x-1/x)²+2*x*(1/x)

= (x-1/x)²+2

= 7²+2 [ from (1)]

= 49+2

= 51

Therefore,

x²+1/x² = 51

•••••

Answered by amankumaraman11
0

Given,

 \huge \boxed{ \rm{}x -  \frac{1}{x}  = 7}

  • To find :  \sf{x}^{2}  +  \frac{1}{ {x}^{2} }

Here,

 \mapsto \:  \bf{x  -   \frac{1}{x} = 7 } \\

  • Squaring both sides,

 \to \:  \bf {\bigg(x  -  \frac{1}{x}  \bigg)}^{2}  =  {(7)}^{2}  \\

 \texttt{We know, }\\  \sf \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:     \: \bullet \:  \purple{{(a - b)}^{2} } =  \pink{ {a}^{2}  +  {b}^{2}  - 2ab} \\

  • Here, LHS is in form of above (tagged) identity. So, applying this identity, we get,

 \to \bf{x}^{2}  +  \frac{1}{ {x}^{2} }  - 2(\cancel{x}) \bigg( \frac{1}{ \cancel{x}}  \bigg) = 49  \\

 \to \bf {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 49 \\  \\  \to \bf \:  \:  \:  \:  \:  \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 49 +2 \\  \\  \to \bf\:  \:  \:  \:  \:  \:  \: {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \red{51}

Hence,

  • Required value of  \sf{{x}^{2}  +  \dfrac{1}{ {x}^{2} } \: \: is \: \: \: \red{51} }.
Similar questions