Math, asked by vaibhav6516, 1 year ago

If (x+1/x)=7find value of (x^2+1/x^2) and (x^4+1/x^4)

Answers

Answered by mandalasrishanth
1

Answer:

x + 1 x = 7

⇒ (x + 1 x )2 =(7)2

⇒ (x2+  1 x 2 + 2) = 49

⇒ x2+  1 x 2 = 47

Therefore, x2+  1 x 2 = 47.


Step-by-step explanation:


Answered by rajeev378
32
\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer
(x +  \frac{1}{x} ) {}^{2}  = 7 {}^{2}   \\ \\   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 49 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 49 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 49 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} } = 47
Now

( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  = (47) {}^{2}  \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 2209 \\  \\  {x}^{4}  +   \frac{1}{ {x}^{4} }  + 2 = 2209 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2209 - 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2207

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@.....rajeev378}}}}
Similar questions