Math, asked by arushithe1, 8 months ago


If x + 1/x = 8 , find the value of x² + 1/x²

Answers

Answered by StarrySoul
26

Given :

 \sf \: x +  \dfrac{1}{x}  = 8

To Find :

  \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Solution :

 \longrightarrow \sf \: x +  \dfrac{1}{x}  = 8

Squaring both the sides

 \longrightarrow \sf \: (x +  \dfrac{1}{x})^{2}   = ( {8})^{2}

 \longrightarrow \sf \:  {x}^{2}  + 2(x)( \dfrac{1}{x} ) +   (\dfrac{1}{x} )^{2}  = 64

 \longrightarrow \sf \:  ({x})^{2}  + 2(x)( \dfrac{1}{x} ) +   (\dfrac{1}{x} )^{2}  = 64

 \longrightarrow \sf \:  {x}^{2}  + 2 +  \dfrac{1}{ {x}^{2} }  = 64

 \longrightarrow \sf \:  {x}^{2}   +  \dfrac{1}{ {x}^{2} }  = 64 - 2

 \longrightarrow \boxed{ \sf \:  {x}^{2}   +  \dfrac{1}{ {x}^{2} }  = 62}

Answered by simranraj9650
0

Answer:

62 is the correct answer

Step-by-step explanation:

hopes it helps you

Similar questions