Math, asked by dhruvdia1818, 1 month ago

) If (x - 1/x) = 8, find the value of (x² + 1/x²) and (x⁴ + 1/x⁴).​

Answers

Answered by karkiarchana
23

Step-by-step explanation:

the formula of A2+b2 formula used

Attachments:
Answered by Anonymous
64

Given:

  • \small{\tt{x-\frac{1}{x}~=~8}}

To Find:

  • \small{\tt{x^2+\frac{1}{x^2}}}

  • \small{\tt{x^4+\frac{1}{x^4}}}

Solution:

Answer of questions 1st:-

\small{\sf{x-\frac{1}{x}~=~8}}

[Squaring both side]

\implies\small{\sf\bigg({x-\frac{1}{x}\bigg)}^2~=~8^2}

\implies\small{\sf{x^2+\frac{1}{x^2}-2\times x \times \frac{1}{x}~=~64}}

\implies\small{\sf{x^2+\frac{1}{x^2}-2\times{\cancel{x}}\times \frac{1}{\cancel{x}}~=~64}}

\implies\small{\sf{x^2+\frac{1}{x^2}~=~64+2}}

\implies\small{\boxed{\bf{x^2+\frac{1}{x^2}~=~66}}}

Answer of questions 2nd:-

\implies\small{\sf{x^2+\frac{1}{x^2}~=~66}}

[Squaring both side]

\implies\small{\sf\bigg({x^2+\frac{1}{x^2}\bigg)}^2~=~66^2}

\implies\small{\sf{x^4+\frac{1}{x^4}+2\times x^2 \times \frac{1}{x^2}~=~66^2}}

\implies\small{\sf{x^4+\frac{1}{x^4}+2\times{\cancel{x^2}}\times \frac{1}{\cancel{x^2}}~=~66^2}}

\implies\small{\sf{x^4+\frac{1}{x^4} = 66^2 - 2}}

\implies\small{\sf{x^4+\frac{1}{x^4}~=~4356 - 2}}

\implies\small{\boxed{\sf{x^4+\frac{1}{x^4}~=~4354}}}

Concept used:

  • (a+b)² = a² + b² + 2ab
  • (a-b)² = a² + b² - 2ab
Similar questions