Math, asked by shaamprabhu07, 11 months ago

if x+1/x=8, find x-1/x​

Answers

Answered by Anonymous
1

Answer:

±2√15

Step-by-step explanation:

Given that,

x +  \dfrac{1}{x}  = 8

To find the value of x -1/x

Squaring both the sides, we get,

 =  >  {(x +  \frac{1}{x} )}^{2}  =  {8}^{2}  \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 64 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 64 - 2 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 62

Now, we know that,

 {(x -  \frac{1}{x} )}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2

Therefore, we will get,

 =  >  {(x -  \frac{1}{x} ) }^{2}  = 62 - 2 \\  \\  =  >  {(x -  \frac{1}{x}) }^{2}  = 60 \\  \\  =  > x -  \frac{1}{x}  =  \pm \sqrt{60}  \\  \\  =  > x -  \frac{1}{x} =  \pm2 \sqrt{15}

Hence, the required value of (x-1/x) = ±2√15.

Similar questions