Math, asked by AasaSingh23, 1 year ago

if x+1/x=8, then find x^4+1/x^4 , x^2+1/x^2? pls help

Answers

Answered by WritersParadise01
31
hey! here's your answer!
___________________

Given :

x + \frac{1}{x} = 8

we know that,

(a + b)² = a² + b² + 2ab

so, using the above Identity, we will solve !

(x + \frac{1}{x})² = (x)² + ( \frac{1}{x} )² + 2(\cancel{x})( \frac{1}{\cancel{x}})

substituting the value of x + \frac{1}{x} ,

(8)² = x² + \frac{1}{{x}}^{2} + 2

=> 64 = x² + \frac{1}{{x}}^{2} + 2

now, 2 is positive, and if we will take it to other side, it will become negative!

=> x² + \frac{1}{{x}}^{2} = 64 - 2

=> x² + \frac{1}{{x}}^{2} = 62

then, again squaring both sides,

=>( x² + \frac{1}{{x}}^{2})² = (x² )² + (\frac{1}{{x}}^{2})² + 2(\cancel{{x}}^{2})(\frac{1}{\cancel{{x}}^{2}})

=> (62)² = x⁴ + \frac{1}{{x}}^{4} + 2

=> 3844 = x⁴ + \frac{1}{{x}}^{4} + 2

=> x⁴ + \frac{1}{{x}}^{4} = 3844 - 2

=> x⁴ + \frac{1}{{x}}^{4} = 3842 .....answer!

AasaSingh23: thanks sooooo much!!
WritersParadise01: ur wlcm✌️
Similar questions