If x+1/x=8, then the value of x^4+1/x^4 is equal to
Answers
Answered by
6
Step-by-step explanation:
x²+1/x²+2=64
x²+1/x²=62
x⁴+1/x⁴+2=3844
x⁴+1/x⁴=3842
Answered by
2
EXPLANATION.
⇒ (x + 1/x) = 8.
As we know that,
Formula of :
⇒ (a + b)² = a² + b² + 2ab.
Using this formula in this question, we get.
Squaring on both sides of the expression, we get.
⇒ (x + 1/x)² = (8)².
⇒ (x)² + (1/x)² + 2(x)(1/x) = 64.
⇒ x² + 1/x² + 2 = 64.
⇒ x² + 1/x² = 64 - 2.
⇒ x² + 1/x² = 62.
Again squaring on both sides of the expression, we get.
⇒ (x² + 1/x²)² = (62)².
⇒ (x²)² + (1/x²)² + 2(x²)(1/x²) = 3844.
⇒ x⁴ + 1/x⁴ + 2 = 3844.
⇒ x⁴ + 1/x⁴ = 3844 - 2.
⇒ x⁴ + 1/x⁴ = 3842.
∴ The value of x⁴ + 1/x⁴ is 3842.
Similar questions